Unraveling the devastating impact of Tomato Leaf Curl New Delhi Virus (ToLCNDV): understanding its characteristics, host range, and management strategies
Keywords:
ToLCNDV, evolution, host range, virus detection, threat managementAbstract
Due to their stagnation, plants are frequently exposed to a variety of stresses, including both abiotic and biotic factors. Biotic stress in plants is due to many microbes that include viruses, fungi, bacteria, and parasitic organisms as plant pathogens. Plant viruses are one of those pathogens that frequently evolve and lower global agricultural productivity. Geminiviruses are the most damaging type of plant viruses. Tomato Leaf Curl New Delhi Virus (ToLCNDV) is a begomovirus belonging to the family Geminiviridae. This is a ssDNA virus having a bipartite genome with genomic length ranging between 2.6-2.7 kb. This virus was originally discovered in India in 1995 from tomato (Lycopersicon esculentum). It mostly infects solanaceous and cucurbitaceous crops and is a whitefly-transmitted, circulative and persistent virus. Its prominent symptoms are severe upward leaf curling, enations, stunting, puckering, yellow spots and yellow mosaic. This virus has devastating effects on the yield of different crops with yield losses ranging between 17.6-99.4 % depending upon the disease-causing factors. ToLCNDV-ES and ToLCNDV-OM are the most devastating strains of this virus. This comprehensive review will provide basic information on the characteristic features of ToLCNDV. The evolutionary mechanism of this virus is studied to know about the strain’s evolution with the passage of time on different host plants cultivated in several regions of the world. This review also covers the genome characteristics, geographical distribution, host range, transmission methods, genetic diversity, different molecular & serological assays, yield losses, and the management of this virus.
References
Alfaro-Fernández, A., Sánchez-Navarro, J. A., Landeira, M., Font, M., Hernández-Llópis, D., & Pallás, V. (2016). Evaluation of PCR and non-radioactive molecular hybridization techniques for the routine diagnosis of Tomato leaf curl New Delhi virus, Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus. Journal of Plant Pathology, 245-254.
Bertin, S., Luigi, M., Parrella, G., Giorgini, M., Davino, S., & Tomassoli, L. (2018). Survey of the distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) in Lazio region (Central Italy): a threat for the northward expansion of Tomato leaf curl New Delhi virus (Begomovirus: Geminiviridae) infection. Phytoparasitica, 46, 171-182.
Bragard, C., Dehnen-Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M. A., Jaques Miret, J. A., Justesen, A. F., MacLeod, A., Magnusson, C. S., Milonas, P., Navas-Cortes, J. A., Parnell, S., Potting, R., Reignault, P. L., Thulke, H. H., Van der Werf, W., Vicent Civera, A., Yuen, J., Zappalà, L., . . . Bottex, B. (2020). Pest categorisation of tomato leaf curl New Delhi virus. Efsa j, 18(7), e06179.
Chang, H.-H., Ku, H.-M., Tsai, W.-S., Chien, R.-C., & Jan, F.-J. (2010). Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. European journal of plant pathology, 127, 219-228.
Chang, H. H., Lee, C. H., Chang, C. J., & Jan, F. J. (2022). FKBP‐type peptidyl‐prolyl cis‐trans isomerase interacts with the movement protein of tomato leaf curl New Delhi virus and impacts viral replication in Nicotiana benthamiana. Molecular Plant Pathology, 23(4), 561-575.
Colla, G., & Rouphael, Y. (2015). Biostimulants in horticulture. Scientia Horticulturae, 196, 1-134.
Desbiez, C., Gentit, P., Cousseau-Suhard, P., Renaudin, I., & Verdin, E. (2021). First report of Tomato leaf curl New Delhi virus infecting courgette in France. New Disease Reports, 42(2), e12006.
Farina, A., Rapisarda, C., Fiallo-Olivé, E., & Navas-Castillo, J. (2023). Tomato Leaf Curl New Delhi Virus Spain Strain Is Not Transmitted by Trialeurodes vaporariorum and Is Inefficiently Transmitted by Bemisia tabaci Mediterranean between Zucchini and the Wild Cucurbit Ecballium elaterium. Insects, 14(4), 384.
Fiallo-Olivé, E., Lett, J.-M., Martin, D. P., Roumagnac, P., Varsani, A., Zerbini, F. M., Navas-Castillo, J., & Consortium, I. R. (2021). ICTV virus taxonomy profile: Geminiviridae 2021. The Journal of General Virology, 102(12).
Fiallo-Olivé, E., & Navas-Castillo, J. (2023). Begomoviruses: what is the secret (s) of their success? Trends in Plant Science.
Figàs, M., Alfaro‐Fernández, A., Font, M., Borràs, D., Casanova, C., Hurtado, M., Plazas, M., Prohens, J., & Soler, S. (2017). Inoculation of cucumber, melon and zucchini varieties with Tomato leaf curl New Delhi virus and evaluation of infection using different detection methods. Annals of Applied Biology, 170(3), 405-414.
Haider, M., Tahir, M., Latif, S., & Briddon, R. (2006). First report of Tomato leaf curl New Delhi virus infecting Eclipta prostrata in Pakistan. Plant Pathology, 55(2).
Hanssen, I. M., Lapidot, M., & Thomma, B. P. (2010). Emerging viral diseases of tomato crops. Molecular plant-microbe interactions, 23(5), 539-548.
Hussain, M., Mansoor, S., Iram, S., Fatima, A. N., & Zafar, Y. (2005). The nuclear shuttle protein of Tomato leaf curl New Delhi virus is a pathogenicity determinant. Journal of Virology, 79(7), 4434-4439.
Hussain, M., Mansoor, S., Iram, S., Zafar, Y., & Briddon, R. (2004). First report of Tomato leaf curl New Delhi virus affecting chilli pepper in Pakistan. Plant pathology, 53(6).
Janssen, D., Simón, A., Boulares, M., & Ruiz, L. (2022). Host species-dependent transmission of tomato leaf curl New Delhi virus-ES by Bemisia tabaci. Plants, 11(3), 390.
Jeevalatha, A., Singh, B., Kaundal, P., Kumar, R., & Raigond, B. (2014). RCA-PCR: a robust technique for the detection of Tomato leaf curl New Delhi virus-[potato] at ultra-low virus titre. Potato J, 41(1), 76-80.
Juárez, M., Rabadán, M. P., Martínez, L. D., Tayahi, M., Grande-Pérez, A., & Gómez, P. (2019). Natural hosts and genetic diversity of the emerging tomato leaf curl New Delhi virus in Spain. Frontiers in Microbiology, 10, 140.
Juárez, M., Tovar, R., Fiallo-Olivé, E., Aranda, M., Gosálvez, B., Castillo, P., Moriones, E., & Navas-Castillo, J. (2014). First detection of Tomato leaf curl New Delhi virus infecting zucchini in Spain. Plant Disease, 98(6), 857-857.
Khan, M., Raj, S., & Singh, R. (2006). First report of Tomato leaf curl New Delhi virus infecting chilli in India. Plant Pathology, 55(2).
Kil, E.-J., Vo, T. T. B., Fadhila, C., Ho, P. T., Lal, A., Troiano, E., Parrella, G., & Lee, S. (2020). Seed transmission of tomato leaf curl New Delhi virus from zucchini squash in Italy. Plants, 9(5), 563.
López, C., Ferriol, M., & Picó, M. B. (2015). Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica, 204, 679-691.
Luigi, M., Bertin, S., Manglli, A., Troiano, E., Davino, S., Tomassoli, L., & Parrella, G. (2019). First report of tomato leaf curl New Delhi virus causing yellow leaf curl of pepper in Europe. Plant Disease, 103(11), 2970-2970.
Luigi, M., Manglli, A., Bertin, S., Donati, L., Tomassoli, L., Ferretti, L., & Faggioli, F. (2020). Development and validation of a specific real-time PCR protocol for the detection of tomato leaf curl New Delhi virus. European Journal of Plant Pathology, 157, 969-974.
Luigi, M., Manglli, A., Valdes, M., Sitzia, M., Davino, S., & Tomassoli, L. (2016). Occurrence of Tomato leaf curl New Delhi virus infecting Zucchini in Sardinia (Italy). Journal of Plant Pathology, 98(3).
Mahas, A., Hassan, N., Aman, R., Marsic, T., Wang, Q., Ali, Z., & Mahfouz, M. M. (2021). LAMP-coupled CRISPR–Cas12a module for rapid and sensitive detection of plant DNA viruses. Viruses, 13(3), 466.
Mastrochirico, M., Spanò, R., & Mascia, T. (2022). Grafting to Manage Infections of the Emerging Tomato Leaf Curl New Delhi Virus in Cucurbits. Plants, 12(1), 37.
Mizutani, T., Daryono, B., Ikegami, M., & Natsuaki, K. (2011). First report of Tomato leaf curl New Delhi virus infecting cucumber in Central Java, Indonesia. Plant Disease, 95(11), 1485-1485.
Mnari-Hattab, M., Zammouri, S., Belkadhi, M., Doña, D. B., Ben Nahia, E., & Hajlaoui, M. (2015). First report of Tomato leaf curl New Delhi virus infecting cucurbits in Tunisia. New Dis. Rep, 31(21), 2044-0588.2015.
Moriones, E., Praveen, S., & Chakraborty, S. (2017). Tomato leaf curl New Delhi virus: an emerging virus complex threatening vegetable and fiber crops. Viruses, 9(10), 264.
Naganur, P., Premchand, U., Shankarappa, K., Mesta, R., Manjunatha, C., & Patil, C. (2019). Development of a loop-mediated isothermal amplification assay for detection of Tomato leaf curl New Delhi virus in ridge gourd [Luffa acutangula (L.) Roxb.]. Int. J. Curr. Microbiol. Appl. Sci, 8, 2282-2295.
Naganur, P., Shankarappa, K. S., Mesta, R. K., Rao, C. D., Venkataravanappa, V., Maruthi, M. N., & Reddy, L. R. C. N. (2023). Detecting Tomato Leaf Curl New Delhi Virus Causing Ridge Gourd Yellow Mosaic Disease, and Other Begomoviruses by Antibody-Based Methods. Plants, 12(3), 490.
Naqvi, A. R., Haq, Q. M., & Mukherjee, S. K. (2010). MicroRNA profiling of tomato leaf curl New Delhi virus (tolcndv) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J, 7, 281.
Orfanidou, C. G., Malandraki, I., Beris, D., Kektsidou, O., Vassilakos, N., Varveri, C., Katis, N. I., & Maliogka, V. I. (2019). First report of tomato leaf curl New Delhi virus in zucchini crops in Greece. Journal of Plant Pathology, 101, 799-799.
Padidam, M., Beachy, R. N., & Fauquet*, C. M. (1995). Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. Journal of General Virology, 76(1), 25-35.
Istat—Istituto Nazionale di Statistica. 2021.(accessed on 10 December 2022).
Panno, S., Caruso, A., Troiano, E., Luigi, M., Manglli, A., Vatrano, T., Iacono, G., Marchione, S., Bertin, S., & Tomassoli, L. (2019). Emergence of tomato leaf curl New Delhi virus in Italy: Estimation of incidence and genetic diversity. Plant Pathology, 68(3), 601-608.
Panno, S., Iacono, G., Davino, M., Marchione, S., Zappardo, V., Bella, P., Tomassoli, L., Accotto, G., & Davino, S. (2016). First report of Tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy. New Dis. Rep, 33(6), 2044-0588.2016.
Pappu, H., Jones, R., & Jain, R. (2009). Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus research, 141(2), 219-236.
Phaneendra, C., Rao, K. S., Jain, R., & Mandal, B. (2012). Tomato leaf curl New Delhi virus is associated with pumpkin leaf curl: a new disease in northern India. Indian Journal of Virology, 23, 42-45.
Rao, G., & Reddy, M. G. (2020). Overview of yield losses due to plant viruses. In Applied plant virology (pp. 531-562). Elsevier.
Rapisarda, C., Cascone, G., Colombo, A., Tropea Garzia, G., Mazzarella, R., & Serges, T. (2005). Physical control possibilities of Bemisia tabaci (Gennadius) and Tomato yellow leaf curl disease (TYLCD) in protected crops [Lycopersicon esculentum Mill.]. Colture Protette (Italy).
Rogers, S. G., Bisaro, D. M., Horsch, R. B., Fraley, R. T., Hoffmann, N. L., Brand, L., Elmer, J. S., & Lloyd, A. M. (1986). Tomato golden mosaic virus A component DNA replicates autonomously in transgenic plants. Cell, 45(4), 593-600.
Rosen, R., Kanakala, S., Kliot, A., Pakkianathan, B. C., Farich, B. A., Santana-Magal, N., Elimelech, M., Kontsedalov, S., Lebedev, G., & Cilia, M. (2015). Persistent, circulative transmission of begomoviruses by whitefly vectors. Current Opinion in Virology, 15, 1-8.
Rouphael, Y., & Colla, G. (2020). Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy, 10, 1461.
Ruiz, M., Simón, A., Velasco, L., García, M., & Janssen, D. (2015). First report of Tomato leaf curl New Delhi virus infecting tomato in Spain. Plant Disease, 99(6), 894-894.
Sanderfoot, A. A., & Lazarowitz, S. G. (1996). Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends in cell biology, 6(9), 353-358.
Sangeetha, B., Malathi, V., Alice, D., Suganthy, M., & Renukadevi, P. (2018). A distinct seed-transmissible strain of tomato leaf curl New Delhi virus infecting Chayote in India. Virus research, 258, 81-91.
Sharma, N., & Prasad, M. (2017). An insight into plant–Tomato leaf curl New Delhi virus interaction. The Nucleus, 60, 335-348.
Sialer, M. F., Lanave, C., Padula, M., Vovlas, C., & Gallitelli, D. (2002). Occurrence of two distinct Tomato spotted wilt virus subgroups in southern Italy. Journal of Plant Pathology, 145-152.
Simón, A., Ruiz, L., Velasco, L., & Janssen, D. (2018). Absolute quantification of Tomato leaf curl New Delhi virus Spain strain, ToLCNDV-ES: Virus accumulation in a host-specific manner. Plant disease, 102(1), 165-171.
Trisciuzzi, N., Silletti, M. R., Gallitelli, D., & Spanò, R. (2018). First detection of tomato leaf curl New Delhi virus in melon and zucchini squash in southern Italy. Journal of Plant Pathology, 100, 149-149.
Ugena, L., Hýlová, A., Podlešáková, K., Humplík, J. F., Doležal, K., Diego, N. D., & Spíchal, L. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Frontiers in plant science, 9, 1327.
Viruses, I. C. o. T. o., & King, A. M. Q. (2011). Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Science.
Zeng, R., Gu, H., Fan, J., Zhu, P., Xu, L., Gao, S.-g., Gao, P., Song, Z., Zhang, K., & Zhang, C. (2023). Occurrence of Tomato Leaf Curl New Delhi Virus in Cucurbit Plants in China. Plant Disease(ja).
Lapidot, M.; Friedmann, M. Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 2002, 140, 109–127.
García-Andrés, S.; Tomás, D.M.; Navas-Castillo, J.; Moriones, E. Resistance-driven selection of begomoviruses associated with the tomato yellow leaf curl disease. Virus Res. 2009, 146, 66–72.
Seal, S.E.; van den Bosch, F.; Jeger, M.J. Factors influencing begomovirus evolution and their increasing global significance: Implications for sustainable control. Crit. Rev. Plant Sci. 2006, 25, 23–46.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Abdul Majid, Muhammad Taimoor Shakeel, Muhammad Naveed Aslam, Waqas Ashraf , Muhammad Raheel , Ambreen Maqsood , Atta ur Rehman Khan , Anam Moosa , Muhammad Umar Shafiq
This work is licensed under a Creative Commons Attribution 4.0 International License.